Minimal Weierstrass equation
\(y^2+xy+y=x^3-x^2-144410x+14644140\)
Mordell-Weil group structure
\(\Z\times \Z/{2}\Z\)
Infinite order Mordell-Weil generator and height
\(P\) | = | \( \left(-4, 3903\right) \) |
\(\hat{h}(P)\) | ≈ | $1.5144211445347996540690432093$ |
Torsion generators
\( \left(\frac{443}{4}, -\frac{447}{8}\right) \)
Integral points
\( \left(-4, 3903\right) \), \( \left(-4, -3900\right) \), \( \left(351, 2490\right) \), \( \left(351, -2842\right) \), \( \left(1050, 31409\right) \), \( \left(1050, -32460\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 439569 \) | = | \(3^{2} \cdot 13^{2} \cdot 17^{2}\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(100552174221170997 \) | = | \(3^{8} \cdot 13^{3} \cdot 17^{8} \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{8615125}{2601} \) | = | \(3^{-2} \cdot 5^{3} \cdot 17^{-2} \cdot 41^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(1\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(1.5144211445347996540690432093\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(0.31186849404595031866516652956\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 32 \) = \( 2^{2}\cdot2\cdot2^{2} \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(2\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
Modular form 439569.2.a.u
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 3538944 | ||
\( \Gamma_0(N) \)-optimal: | not computed* (one of 2 curves in this isogeny class which might be optimal) | ||
Manin constant: | 1 (conditional*) |
Special L-value
\( L'(E,1) \) ≈ \( 3.7784019335792994631269899270223051887 \)
Local data
This elliptic curve is not semistable. There are 3 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(3\) | \(4\) | \(I_2^{*}\) | Additive | -1 | 2 | 8 | 2 |
\(13\) | \(2\) | \(III\) | Additive | -1 | 2 | 3 | 0 |
\(17\) | \(4\) | \(I_2^{*}\) | Additive | 1 | 2 | 8 | 2 |
Galois representations
The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X6.
This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right)$ and has index 3.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(2\) | B |
$p$-adic data
$p$-adic regulators
\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.
No Iwasawa invariant data is available for this curve.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2.
Its isogeny class 439569.u
consists of 2 curves linked by isogenies of
degree 2.