Properties

Label 439569.l1
Conductor $439569$
Discriminant $1.893\times 10^{25}$
j-invariant \( 77571 \)
CM no
Rank $0$
Torsion structure trivial

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([1, -1, 1, -236790326, 1386821739970])
 
gp: E = ellinit([1, -1, 1, -236790326, 1386821739970])
 
magma: E := EllipticCurve([1, -1, 1, -236790326, 1386821739970]);
 

\(y^2+xy+y=x^3-x^2-236790326x+1386821739970\)  Toggle raw display

Mordell-Weil group structure

trivial

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\(\)  Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 439569 \)  =  \(3^{2} \cdot 13^{2} \cdot 17^{2}\)
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: \(18928499440512330195484347 \)  =  \(3^{9} \cdot 13^{10} \cdot 17^{8} \)
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( 77571 \)  =  \(3^{3} \cdot 13^{2} \cdot 17\)
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: \(0\)
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: \(1\)
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: \(0.068959172790389471758077323169\)
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: \( 2 \)  = \( 2\cdot1\cdot1 \)
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: \(1\)
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form 439569.2.a.l

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - q^{2} - q^{4} - 2q^{5} - 2q^{7} + 3q^{8} + 2q^{10} + 3q^{11} + 2q^{14} - q^{16} + 2q^{19} + O(q^{20}) \)  Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 82487808
\( \Gamma_0(N) \)-optimal: yes
Manin constant: 1

Special L-value

sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

\( L(E,1) \) ≈ \( 0.13791834558077894351615464633642913218 \)

Local data

This elliptic curve is not semistable. There are 3 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(3\) \(2\) \(III^{*}\) Additive 1 2 9 0
\(13\) \(1\) \(II^{*}\) Additive 1 2 10 0
\(17\) \(1\) \(IV^{*}\) Additive -1 2 8 0

Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) .

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).

No Iwasawa invariant data is available for this curve.

Isogenies

This curve has no rational isogenies. Its isogeny class 439569.l consists of this curve only.