Show commands for:
SageMath
sage: E = EllipticCurve("l1")
sage: E.isogeny_class()
Elliptic curves in class 43681l
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
43681.c2 | 43681l1 | [1, 0, 0, -910, 41229] | [] | 39312 | \(\Gamma_0(N)\)-optimal |
43681.c1 | 43681l2 | [1, 0, 0, -1311340, -578120487] | [] | 432432 |
Rank
sage: E.rank()
The elliptic curves in class 43681l have rank \(1\).
Complex multiplication
The elliptic curves in class 43681l do not have complex multiplication.Modular form 43681.2.a.l
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 11 \\ 11 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.