Properties

Label 4368.c
Number of curves $2$
Conductor $4368$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 4368.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4368.c1 4368s2 \([0, -1, 0, -404, -2436]\) \(28556329552/5373459\) \(1375605504\) \([2]\) \(1920\) \(0.47132\)  
4368.c2 4368s1 \([0, -1, 0, 51, -252]\) \(899022848/2012283\) \(-32196528\) \([2]\) \(960\) \(0.12475\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 4368.c have rank \(1\).

Complex multiplication

The elliptic curves in class 4368.c do not have complex multiplication.

Modular form 4368.2.a.c

sage: E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} + q^{7} + q^{9} - q^{13} + 2 q^{15} - 4 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.