Properties

Label 4368.b
Number of curves $6$
Conductor $4368$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 4368.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4368.b1 4368d5 \([0, -1, 0, -151424, 22730400]\) \(187491149065688834/3549\) \(7268352\) \([4]\) \(8192\) \(1.3043\)  
4368.b2 4368d3 \([0, -1, 0, -9464, 357504]\) \(91557481657828/12595401\) \(12897690624\) \([2, 4]\) \(4096\) \(0.95770\)  
4368.b3 4368d6 \([0, -1, 0, -8624, 422688]\) \(-34639400027234/17130345141\) \(-35082946848768\) \([4]\) \(8192\) \(1.3043\)  
4368.b4 4368d2 \([0, -1, 0, -644, 4704]\) \(115562131792/32867289\) \(8414025984\) \([2, 2]\) \(2048\) \(0.61113\)  
4368.b5 4368d1 \([0, -1, 0, -239, -1290]\) \(94757435392/4179357\) \(66869712\) \([2]\) \(1024\) \(0.26455\) \(\Gamma_0(N)\)-optimal
4368.b6 4368d4 \([0, -1, 0, 1696, 29040]\) \(526556774012/674481717\) \(-690669278208\) \([2]\) \(4096\) \(0.95770\)  

Rank

sage: E.rank()
 

The elliptic curves in class 4368.b have rank \(0\).

Complex multiplication

The elliptic curves in class 4368.b do not have complex multiplication.

Modular form 4368.2.a.b

sage: E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} - q^{7} + q^{9} + 4 q^{11} + q^{13} + 2 q^{15} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.