Properties

Label 435c
Number of curves $4$
Conductor $435$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 435c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
435.d3 435c1 \([1, 0, 1, -28, 53]\) \(2305199161/1305\) \(1305\) \([2]\) \(48\) \(-0.45550\) \(\Gamma_0(N)\)-optimal
435.d2 435c2 \([1, 0, 1, -33, 31]\) \(3803721481/1703025\) \(1703025\) \([2, 2]\) \(96\) \(-0.10892\)  
435.d1 435c3 \([1, 0, 1, -258, -1589]\) \(1888690601881/31827645\) \(31827645\) \([2]\) \(192\) \(0.23765\)  
435.d4 435c4 \([1, 0, 1, 112, 263]\) \(157376536199/118918125\) \(-118918125\) \([4]\) \(192\) \(0.23765\)  

Rank

sage: E.rank()
 

The elliptic curves in class 435c have rank \(0\).

Complex multiplication

The elliptic curves in class 435c do not have complex multiplication.

Modular form 435.2.a.c

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{3} - q^{4} + q^{5} + q^{6} + 4 q^{7} - 3 q^{8} + q^{9} + q^{10} - 4 q^{11} - q^{12} + 6 q^{13} + 4 q^{14} + q^{15} - q^{16} + 6 q^{17} + q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.