Properties

Label 4356.d
Number of curves 2
Conductor 4356
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("4356.d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 4356.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
4356.d1 4356f2 [0, 0, 0, -13431, -284834] [2] 11520  
4356.d2 4356f1 [0, 0, 0, 2904, -33275] [2] 5760 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 4356.d have rank \(0\).

Modular form 4356.2.a.d

sage: E.q_eigenform(10)
 
\( q - 2q^{5} + 2q^{7} + 2q^{13} + 4q^{17} + 6q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.