Properties

Label 435344v
Number of curves $2$
Conductor $435344$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("v1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 435344v

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
435344.v1 435344v1 \([0, -1, 0, -118130549, -494147779139]\) \(-9221261135586623488/121324931\) \(-2398667853312733184\) \([]\) \(41803776\) \(3.0852\) \(\Gamma_0(N)\)-optimal*
435344.v2 435344v2 \([0, -1, 0, -111451669, -552492436003]\) \(-7743965038771437568/2189290237869371\) \(-43283602734121045062201344\) \([]\) \(125411328\) \(3.6345\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 435344v1.

Rank

sage: E.rank()
 

The elliptic curves in class 435344v have rank \(0\).

Complex multiplication

The elliptic curves in class 435344v do not have complex multiplication.

Modular form 435344.2.a.v

sage: E.q_eigenform(10)
 
\(q - q^{3} + 3q^{5} + q^{7} - 2q^{9} + 3q^{11} - 3q^{15} + 6q^{17} - q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.