Properties

Label 435344n
Number of curves $1$
Conductor $435344$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("n1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 435344n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
435344.n1 435344n1 \([0, 1, 0, -9667701, -10337982173]\) \(5054443262672896/591220696157\) \(11688793608998391861248\) \([]\) \(50029056\) \(2.9660\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 435344n1 has rank \(1\).

Complex multiplication

The elliptic curves in class 435344n do not have complex multiplication.

Modular form 435344.2.a.n

sage: E.q_eigenform(10)
 
\(q - 2q^{3} + 4q^{5} - q^{7} + q^{9} - 5q^{11} - 8q^{15} + 3q^{17} - 4q^{19} + O(q^{20})\)  Toggle raw display