# Properties

 Label 435344.w1 Conductor $435344$ Discriminant $-7.620\times 10^{18}$ j-invariant $$\frac{2917645350022143}{11008380780544}$$ CM no Rank $1$ Torsion structure trivial

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, 263341, -122204654])

gp: E = ellinit([0, 0, 0, 263341, -122204654])

magma: E := EllipticCurve([0, 0, 0, 263341, -122204654]);

$$y^2=x^3+263341x-122204654$$

## Mordell-Weil group structure

$\Z$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $P$ = $$\left(3903, 245686\right)$$ $\hat{h}(P)$ ≈ $3.3574746710624547171369923941$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$(3903,\pm 245686)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$435344$$ = $2^{4} \cdot 7 \cdot 13^{2} \cdot 23$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-7620265377431289856$ = $-1 \cdot 2^{26} \cdot 7^{4} \cdot 13^{2} \cdot 23^{4}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{2917645350022143}{11008380780544}$$ = $2^{-14} \cdot 3^{3} \cdot 7^{-4} \cdot 13 \cdot 23^{-4} \cdot 47^{3} \cdot 431^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $2.3059257019337736711798506017\dots$ Stable Faltings height: $1.1852869617969055724203705733\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $1$ sage: E.regulator()  magma: Regulator(E); Regulator: $3.3574746710624547171369923941\dots$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.11909063712306776012380282450\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $16$  = $2\cdot2\cdot1\cdot2^{2}$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $1$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L'(E,1)$ ≈ $6.3975007632222413838009153613357026375$

## Modular invariants

Modular form 435344.2.a.w

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - 3q^{5} - q^{7} - 3q^{9} + 3q^{17} + 8q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 7354368 $\Gamma_0(N)$-optimal: yes Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $I_{18}^{*}$ Additive -1 4 26 14
$7$ $2$ $I_{4}$ Non-split multiplicative 1 1 4 4
$13$ $1$ $II$ Additive 1 2 2 0
$23$ $4$ $I_{4}$ Split multiplicative -1 1 4 4

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image $\GL(2,\Z_\ell)$ for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2G 4.8.0.2

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.

No Iwasawa invariant data is available for this curve.

## Isogenies

This curve has no rational isogenies. Its isogeny class 435344.w consists of this curve only.