# Properties

 Label 435344.k1 Conductor $435344$ Discriminant $7.051\times 10^{26}$ j-invariant $$\frac{5642017163771722268092767232}{570626054098424597}$$ CM no Rank $1$ Torsion structure trivial

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 1, 0, -39798825577, 3055987513005987])

gp: E = ellinit([0, 1, 0, -39798825577, 3055987513005987])

magma: E := EllipticCurve([0, 1, 0, -39798825577, 3055987513005987]);

$$y^2=x^3+x^2-39798825577x+3055987513005987$$

## Mordell-Weil group structure

$\Z$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $P$ = $$\left(93422, 12380095\right)$$ $\hat{h}(P)$ ≈ $0.70092992189623474247326923948$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$(93422,\pm 12380095)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$435344$$ = $2^{4} \cdot 7 \cdot 13^{2} \cdot 23$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $705101561230531259038969088$ = $2^{8} \cdot 7^{9} \cdot 13^{9} \cdot 23^{5}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{5642017163771722268092767232}{570626054098424597}$$ = $2^{10} \cdot 7^{-9} \cdot 13^{-3} \cdot 23^{-5} \cdot 176622007^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $4.5825746763148025189331203789\dots$ Stable Faltings height: $2.8380018772107372779615552438\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $1$ sage: E.regulator()  magma: Regulator(E); Regulator: $0.70092992189623474247326923948\dots$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.039152023124549354752472200165\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $180$  = $1\cdot3^{2}\cdot2^{2}\cdot5$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $1$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L'(E,1)$ ≈ $4.9397084119385920349260716325859411922$

## Modular invariants

Modular form 435344.2.a.k

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - 2q^{3} + 2q^{5} + q^{7} + q^{9} - 5q^{11} - 4q^{15} - 7q^{17} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 798336000 $\Gamma_0(N)$-optimal: yes Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $1$ $I_0^{*}$ Additive 1 4 8 0
$7$ $9$ $I_{9}$ Split multiplicative -1 1 9 9
$13$ $4$ $I_3^{*}$ Additive 1 2 9 3
$23$ $5$ $I_{5}$ Split multiplicative -1 1 5 5

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$.

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.

No Iwasawa invariant data is available for this curve.

## Isogenies

This curve has no rational isogenies. Its isogeny class 435344.k consists of this curve only.