Properties

Label 435344.j
Number of curves $2$
Conductor $435344$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("j1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 435344.j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
435344.j1 435344j2 \([0, 1, 0, -1637328, -755502188]\) \(24553362849625/1755162752\) \(34700637666584035328\) \([2]\) \(12644352\) \(2.4964\) \(\Gamma_0(N)\)-optimal*
435344.j2 435344j1 \([0, 1, 0, 93232, -51510380]\) \(4533086375/60669952\) \(-1199481939325616128\) \([2]\) \(6322176\) \(2.1498\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 435344.j1.

Rank

sage: E.rank()
 

The elliptic curves in class 435344.j have rank \(0\).

Complex multiplication

The elliptic curves in class 435344.j do not have complex multiplication.

Modular form 435344.2.a.j

sage: E.q_eigenform(10)
 
\(q - 2q^{3} + q^{7} + q^{9} + 4q^{11} + 6q^{17} - 6q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.