Label 435344.h
Number of curves $2$
Conductor $435344$
CM no
Rank $1$

Related objects


Learn more

Show commands: SageMath
sage: E = EllipticCurve("h1")
sage: E.isogeny_class()

Elliptic curves in class 435344.h

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
435344.h1 435344h2 \([0, 1, 0, -82528, -9152220]\) \(12576878500/1127\) \(5570369272832\) \([2]\) \(1228800\) \(1.4857\) \(\Gamma_0(N)\)-optimal*
435344.h2 435344h1 \([0, 1, 0, -4788, -165476]\) \(-9826000/3703\) \(-4575660474112\) \([2]\) \(614400\) \(1.1391\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 435344.h1.


sage: E.rank()

The elliptic curves in class 435344.h have rank \(1\).

Complex multiplication

The elliptic curves in class 435344.h do not have complex multiplication.

Modular form 435344.2.a.h

sage: E.q_eigenform(10)
\(q - 2q^{3} - q^{7} + q^{9} + 4q^{11} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.