Show commands:
SageMath

sage: E = EllipticCurve("ba1")

sage: E.isogeny_class()

## Elliptic curves in class 435344.ba

sage: E.isogeny_class().curves

LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|

435344.ba1 | 435344ba2 | \([0, 0, 0, -56615, -435006]\) | \(16241202000/9332687\) | \(11532056987080448\) | \([2]\) | \(1935360\) | \(1.7716\) | |

435344.ba2 | 435344ba1 | \([0, 0, 0, -37180, 2748447]\) | \(73598976000/336973\) | \(26024068946512\) | \([2]\) | \(967680\) | \(1.4250\) |
\(\Gamma_0(N)\)-optimal^{*} |

^{*}optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 0 curves highlighted, and conditionally curve 435344.ba1.

## Rank

sage: E.rank()

The elliptic curves in class 435344.ba have rank \(1\).

## Complex multiplication

The elliptic curves in class 435344.ba do not have complex multiplication.## Modular form 435344.2.a.ba

sage: E.q_eigenform(10)

## Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.