Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 435.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
435.a1 | 435d3 | \([1, 0, 0, -6960, -224073]\) | \(37286818682653441/1305\) | \(1305\) | \([2]\) | \(320\) | \(0.54412\) | |
435.a2 | 435d2 | \([1, 0, 0, -435, -3528]\) | \(9104453457841/1703025\) | \(1703025\) | \([2, 2]\) | \(160\) | \(0.19755\) | |
435.a3 | 435d4 | \([1, 0, 0, -390, -4275]\) | \(-6561258219361/3978455625\) | \(-3978455625\) | \([4]\) | \(320\) | \(0.54412\) | |
435.a4 | 435d1 | \([1, 0, 0, -30, -45]\) | \(2992209121/951345\) | \(951345\) | \([4]\) | \(80\) | \(-0.14903\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 435.a have rank \(0\).
Complex multiplication
The elliptic curves in class 435.a do not have complex multiplication.Modular form 435.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.