Properties

Label 435.a
Number of curves $4$
Conductor $435$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 435.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
435.a1 435d3 \([1, 0, 0, -6960, -224073]\) \(37286818682653441/1305\) \(1305\) \([2]\) \(320\) \(0.54412\)  
435.a2 435d2 \([1, 0, 0, -435, -3528]\) \(9104453457841/1703025\) \(1703025\) \([2, 2]\) \(160\) \(0.19755\)  
435.a3 435d4 \([1, 0, 0, -390, -4275]\) \(-6561258219361/3978455625\) \(-3978455625\) \([4]\) \(320\) \(0.54412\)  
435.a4 435d1 \([1, 0, 0, -30, -45]\) \(2992209121/951345\) \(951345\) \([4]\) \(80\) \(-0.14903\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 435.a have rank \(0\).

Complex multiplication

The elliptic curves in class 435.a do not have complex multiplication.

Modular form 435.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} - q^{4} + q^{5} - q^{6} - 4 q^{7} + 3 q^{8} + q^{9} - q^{10} - q^{12} + 6 q^{13} + 4 q^{14} + q^{15} - q^{16} + 2 q^{17} - q^{18} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.