Minimal Weierstrass equation
Minimal equation
Minimal equation
Simplified equation
\(y^2=x^3-x^2-1458408x+678387312\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-1458408xz^2+678387312z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-118131075x+494189957250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Torsion generators
\( \left(697, 0\right) \)
Integral points
\( \left(697, 0\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 433200 \) | = | $2^{4} \cdot 3 \cdot 5^{2} \cdot 19^{2}$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $395078400000000 $ | = | $2^{14} \cdot 3^{2} \cdot 5^{8} \cdot 19^{3} $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{781484460931}{900} \) | = | $2^{-2} \cdot 3^{-2} \cdot 5^{-2} \cdot 61^{3} \cdot 151^{3}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $2.0848656600286928707937231648\dots$ | ||
Stable Faltings height: | $-0.14911022153991274092614548125\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $0$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $1$ | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
| |||
Real period: | $0.45002732844209453371821734557\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 32 $ = $ 2\cdot2\cdot2^{2}\cdot2 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $2$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L(E,1) $ ≈ $ 3.6002186275367562697457387646 $ |
Modular invariants
Modular form 433200.2.a.eg
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 4423680 | ||
$ \Gamma_0(N) $-optimal: | not computed* (one of 2 curves in this isogeny class which might be optimal) | ||
Manin constant: | 1 (conditional*) |
Local data
This elliptic curve is not semistable. There are 4 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{6}^{*}$ | Additive | -1 | 4 | 14 | 2 |
$3$ | $2$ | $I_{2}$ | Non-split multiplicative | 1 | 1 | 2 | 2 |
$5$ | $4$ | $I_{2}^{*}$ | Additive | 1 | 2 | 8 | 2 |
$19$ | $2$ | $III$ | Additive | 1 | 2 | 3 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
No Iwasawa invariant data is available for this curve.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 433200.eg
consists of 2 curves linked by isogenies of
degree 2.