Properties

Label 433200.p
Number of curves $4$
Conductor $433200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("p1")
 
E.isogeny_class()
 

Elliptic curves in class 433200.p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
433200.p1 433200p4 \([0, -1, 0, -139710008, -635432857488]\) \(100162392144121/23457780\) \(70629883289867520000000\) \([2]\) \(106168320\) \(3.3748\)  
433200.p2 433200p3 \([0, -1, 0, -64622008, 194462822512]\) \(9912050027641/311647500\) \(938350796732640000000000\) \([2]\) \(106168320\) \(3.3748\) \(\Gamma_0(N)\)-optimal*
433200.p3 433200p2 \([0, -1, 0, -9750008, -7466137488]\) \(34043726521/11696400\) \(35217116321817600000000\) \([2, 2]\) \(53084160\) \(3.0282\) \(\Gamma_0(N)\)-optimal*
433200.p4 433200p1 \([0, -1, 0, 1801992, -812185488]\) \(214921799/218880\) \(-659033755729920000000\) \([2]\) \(26542080\) \(2.6816\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 0 curves highlighted, and conditionally curve 433200.p1.

Rank

sage: E.rank()
 

The elliptic curves in class 433200.p have rank \(1\).

Complex multiplication

The elliptic curves in class 433200.p do not have complex multiplication.

Modular form 433200.2.a.p

sage: E.q_eigenform(10)
 
\(q - q^{3} - 4 q^{7} + q^{9} + 4 q^{11} - 6 q^{13} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.