Properties

Label 433200.fl
Number of curves $4$
Conductor $433200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("fl1")
 
E.isogeny_class()
 

Elliptic curves in class 433200.fl

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
433200.fl1 433200fl3 \([0, -1, 0, -438979008, 3540231760512]\) \(3107086841064961/570\) \(1716233738880000000\) \([4]\) \(79626240\) \(3.3346\) \(\Gamma_0(N)\)-optimal*
433200.fl2 433200fl4 \([0, -1, 0, -31771008, 36683440512]\) \(1177918188481/488703750\) \(1471455901872240000000000\) \([2]\) \(79626240\) \(3.3346\)  
433200.fl3 433200fl2 \([0, -1, 0, -27439008, 55311040512]\) \(758800078561/324900\) \(978253231161600000000\) \([2, 2]\) \(39813120\) \(2.9880\) \(\Gamma_0(N)\)-optimal*
433200.fl4 433200fl1 \([0, -1, 0, -1447008, 1143712512]\) \(-111284641/123120\) \(-370706487598080000000\) \([2]\) \(19906560\) \(2.6415\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 3 curves highlighted, and conditionally curve 433200.fl1.

Rank

sage: E.rank()
 

The elliptic curves in class 433200.fl have rank \(1\).

Complex multiplication

The elliptic curves in class 433200.fl do not have complex multiplication.

Modular form 433200.2.a.fl

sage: E.q_eigenform(10)
 
\(q - q^{3} + 4 q^{7} + q^{9} + 4 q^{11} - 2 q^{13} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.