Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-563x+4369\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-563xz^2+4369z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-45630x+3321864\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(8, 21)$ | $2.8848768900925444247940231517$ | $\infty$ |
| $(17, 0)$ | $0$ | $2$ |
Integral points
\((8,\pm 21)\), \( \left(17, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 43264 \) | = | $2^{8} \cdot 13^{2}$ |
|
| Discriminant: | $\Delta$ | = | $2471326208$ | = | $2^{9} \cdot 13^{6} $ |
|
| j-invariant: | $j$ | = | \( 8000 \) | = | $2^{6} \cdot 5^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z[\sqrt{-2}]\) (potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $N(\mathrm{U}(1))$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.53192843809090159356185005444$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.2704066260598257565278177574$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9029767420170889$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.8679156132768884$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.8848768900925444247940231517$ |
|
| Real period: | $\Omega$ | ≈ | $1.3972493271423516642540147881$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $4.0308922935703276917336711672 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.030892294 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.397249 \cdot 2.884877 \cdot 4}{2^2} \\ & \approx 4.030892294\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 18816 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $III$ | additive | 1 | 8 | 9 | 0 |
| $13$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 169 = 13^{2} \) |
| $13$ | additive | $86$ | \( 256 = 2^{8} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 43264f
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 256a1, its twist by $13$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.4.346112.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | 4.0.1038336.1 | \(\Z/6\Z\) | not in database |
| $4$ | 4.2.3115008.3 | \(\Z/6\Z\) | not in database |
| $8$ | 8.0.1916696264704.12 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.9703274840064.72 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $8$ | 8.0.4312566595584.14 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $8$ | 8.4.38813099360256.10 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/18\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $20$ | 20.0.11711632900059610833514068175237414912.2 | \(\Z/22\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | ss | ss | ord | add | ord | ord | ss | ss | ss | ss | ord | ord | ss |
| $\lambda$-invariant(s) | - | 5 | 1,1 | 1,1 | 1 | - | 1 | 1 | 1,1 | 1,1 | 1,1 | 1,1 | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | - | 0 | 0,0 | 0,0 | 0 | - | 0 | 0 | 0,0 | 0,0 | 0,0 | 0,0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.