Properties

Label 432.e
Number of curves $4$
Conductor $432$
CM \(\Q(\sqrt{-3}) \)
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 432.e have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 7 T + 19 T^{2}\) 1.19.ah
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

Each elliptic curve in class 432.e has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-3}) \).

Modular form 432.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q + q^{7} + 5 q^{13} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 27 & 9 & 3 \\ 27 & 1 & 3 & 9 \\ 9 & 3 & 1 & 3 \\ 3 & 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 432.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
432.e1 432a4 \([0, 0, 0, -4320, 109296]\) \(-12288000\) \(-725594112\) \([]\) \(216\) \(0.74530\)   \(-27\)
432.e2 432a2 \([0, 0, 0, -480, -4048]\) \(-12288000\) \(-995328\) \([]\) \(72\) \(0.19599\)   \(-27\)
432.e3 432a1 \([0, 0, 0, 0, -16]\) \(0\) \(-110592\) \([]\) \(24\) \(-0.35332\) \(\Gamma_0(N)\)-optimal \(-3\)
432.e4 432a3 \([0, 0, 0, 0, 432]\) \(0\) \(-80621568\) \([]\) \(72\) \(0.19599\)   \(-3\)