Properties

Label 432.a
Number of curves $1$
Conductor $432$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 432.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
432.a1 432h1 \([0, 0, 0, -12, -20]\) \(-3072\) \(-62208\) \([]\) \(48\) \(-0.36760\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 432.a1 has rank \(0\).

Complex multiplication

The elliptic curves in class 432.a do not have complex multiplication.

Modular form 432.2.a.a

sage: E.q_eigenform(10)
 
\(q - 4q^{5} + 3q^{7} + 4q^{11} + q^{13} + 4q^{17} + q^{19} + O(q^{20})\)  Toggle raw display