Show commands for:
SageMath
sage: E = EllipticCurve("bw1")
sage: E.isogeny_class()
Elliptic curves in class 43120bw
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
43120.k4 | 43120bw1 | [0, 1, 0, -2221, 38730] | [2] | 41472 | \(\Gamma_0(N)\)-optimal |
43120.k3 | 43120bw2 | [0, 1, 0, -4916, -76616] | [2] | 82944 | |
43120.k2 | 43120bw3 | [0, 1, 0, -21821, -1232330] | [2] | 124416 | |
43120.k1 | 43120bw4 | [0, 1, 0, -347916, -79103816] | [2] | 248832 |
Rank
sage: E.rank()
The elliptic curves in class 43120bw have rank \(0\).
Complex multiplication
The elliptic curves in class 43120bw do not have complex multiplication.Modular form 43120.2.a.bw
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.