Properties

Label 429.a
Number of curves $2$
Conductor $429$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("429.a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 429.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
429.a1 429a2 [1, 1, 1, -13, 8] [2] 32  
429.a2 429a1 [1, 1, 1, 2, 2] [2] 16 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 429.a have rank \(1\).

Modular form 429.2.a.a

sage: E.q_eigenform(10)
 
\( q - q^{2} - q^{3} - q^{4} + q^{6} + 3q^{8} + q^{9} + q^{11} + q^{12} + q^{13} - q^{16} - 4q^{17} - q^{18} - 8q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.