Show commands:
SageMath
E = EllipticCurve("n1")
E.isogeny_class()
Elliptic curves in class 4275.n
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
4275.n1 | 4275a2 | \([1, -1, 0, -37992, 2859791]\) | \(115003963647/19\) | \(1001953125\) | \([2]\) | \(5120\) | \(1.1279\) | |
4275.n2 | 4275a1 | \([1, -1, 0, -2367, 45416]\) | \(-27818127/361\) | \(-19037109375\) | \([2]\) | \(2560\) | \(0.78129\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 4275.n have rank \(1\).
Complex multiplication
The elliptic curves in class 4275.n do not have complex multiplication.Modular form 4275.2.a.n
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.