Properties

Label 4275.i
Number of curves $3$
Conductor $4275$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 4275.i have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 4275.i do not have complex multiplication.

Modular form 4275.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{4} + q^{7} - 3 q^{11} + 4 q^{13} + 4 q^{16} - 3 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 4275.i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4275.i1 4275k3 \([0, 0, 1, -173100, 27720031]\) \(-50357871050752/19\) \(-216421875\) \([]\) \(7776\) \(1.3875\)  
4275.i2 4275k2 \([0, 0, 1, -2100, 39406]\) \(-89915392/6859\) \(-78128296875\) \([]\) \(2592\) \(0.83816\)  
4275.i3 4275k1 \([0, 0, 1, 150, 31]\) \(32768/19\) \(-216421875\) \([]\) \(864\) \(0.28885\) \(\Gamma_0(N)\)-optimal