Show commands for:
SageMath
sage: E = EllipticCurve("h1")
sage: E.isogeny_class()
Elliptic curves in class 424830h
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
424830.h2 | 424830h1 | [1, 1, 0, -23840338, 117151766068] | [2] | 106168320 | \(\Gamma_0(N)\)-optimal* |
424830.h1 | 424830h2 | [1, 1, 0, -533636338, 4738656424468] | [2] | 212336640 | \(\Gamma_0(N)\)-optimal* |
Rank
sage: E.rank()
The elliptic curves in class 424830h have rank \(0\).
Complex multiplication
The elliptic curves in class 424830h do not have complex multiplication.Modular form 424830.2.a.h
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.