Show commands for:
SageMath
sage: E = EllipticCurve("f1")
sage: E.isogeny_class()
Elliptic curves in class 424830f
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
424830.f1 | 424830f1 | [1, 1, 0, -470124253, -4030659158147] | [] | 274827168 | \(\Gamma_0(N)\)-optimal* |
424830.f2 | 424830f2 | [1, 1, 0, 2184001172, -14826048911792] | [] | 824481504 | \(\Gamma_0(N)\)-optimal* |
Rank
sage: E.rank()
The elliptic curves in class 424830f have rank \(1\).
Complex multiplication
The elliptic curves in class 424830f do not have complex multiplication.Modular form 424830.2.a.f
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.