Properties

Label 424830bc
Number of curves $2$
Conductor $424830$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("bc1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 424830bc

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
424830.bc2 424830bc1 [1, 1, 0, 176718, 31346316] [] 8957952 \(\Gamma_0(N)\)-optimal
424830.bc1 424830bc2 [1, 1, 0, -1735017, -1383719931] [] 26873856  

Rank

sage: E.rank()
 

The elliptic curves in class 424830bc have rank \(0\).

Complex multiplication

The elliptic curves in class 424830bc do not have complex multiplication.

Modular form 424830.2.a.bc

sage: E.q_eigenform(10)
 
\( q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{8} + q^{9} - q^{10} - 6q^{11} - q^{12} - q^{13} - q^{15} + q^{16} - q^{18} + 2q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.