Properties

Label 424830bb
Number of curves $2$
Conductor $424830$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("bb1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 424830bb

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
424830.bb2 424830bb1 [1, 1, 0, -105040258628, 13161979018702032] [2] 3609722880 \(\Gamma_0(N)\)-optimal*
424830.bb1 424830bb2 [1, 1, 0, -1682734261828, 840177500560518352] [2] 7219445760 \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 424830bb1.

Rank

sage: E.rank()
 

The elliptic curves in class 424830bb have rank \(0\).

Complex multiplication

The elliptic curves in class 424830bb do not have complex multiplication.

Modular form 424830.2.a.bb

sage: E.q_eigenform(10)
 
\( q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{8} + q^{9} + q^{10} + 6q^{11} - q^{12} + 4q^{13} + q^{15} + q^{16} - q^{18} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.