Properties

Label 424830.w
Number of curves $2$
Conductor $424830$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("w1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 424830.w

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
424830.w1 424830w2 [1, 1, 0, -654146448, -6439366593792] [2] 209018880 \(\Gamma_0(N)\)-optimal*
424830.w2 424830w1 [1, 1, 0, -37859728, -116141589248] [2] 104509440 \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 424830.w1.

Rank

sage: E.rank()
 

The elliptic curves in class 424830.w have rank \(0\).

Complex multiplication

The elliptic curves in class 424830.w do not have complex multiplication.

Modular form 424830.2.a.w

sage: E.q_eigenform(10)
 
\( q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{8} + q^{9} + q^{10} + 4q^{11} - q^{12} - 4q^{13} + q^{15} + q^{16} - q^{18} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.