Properties

Label 424830.r1
Conductor $424830$
Discriminant $-7.048\times 10^{18}$
j-invariant \( -\frac{2239996279676393}{248832000} \)
CM no
Rank $1$
Torsion structure trivial

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([1, 1, 0, -8309053, 9216245053])
 
gp: E = ellinit([1, 1, 0, -8309053, 9216245053])
 
magma: E := EllipticCurve([1, 1, 0, -8309053, 9216245053]);
 

\(y^2+xy=x^3+x^2-8309053x+9216245053\)  Toggle raw display

Mordell-Weil group structure

\(\Z\)

Infinite order Mordell-Weil generator and height

sage: E.gens()
 
magma: Generators(E);
 

\(P\) =  \(\left(\frac{177431}{121}, \frac{17265733}{1331}\right)\)  Toggle raw display
\(\hat{h}(P)\) ≈  $9.9846075427427632039646641969$

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\(\)  Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 424830 \)  =  \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 17^{2}\)
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: \(-7047536186428416000 \)  =  \(-1 \cdot 2^{13} \cdot 3^{5} \cdot 5^{3} \cdot 7^{8} \cdot 17^{3} \)
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( -\frac{2239996279676393}{248832000} \)  =  \(-1 \cdot 2^{-13} \cdot 3^{-5} \cdot 5^{-3} \cdot 7 \cdot 68399^{3}\)
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: \(1\)
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: \(9.9846075427427632039646641969\)
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: \(0.22662239196180080397524437963\)
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: \( 2 \)  = \( 1\cdot1\cdot1\cdot1\cdot2 \)
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: \(1\)
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form 424830.2.a.r

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{8} + q^{9} + q^{10} + 2q^{11} - q^{12} - q^{13} + q^{15} + q^{16} - q^{18} + O(q^{20}) \)  Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 18869760
\( \Gamma_0(N) \)-optimal: yes
Manin constant: 1

Special L-value

sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

\( L'(E,1) \) ≈ \( 4.5254712882724065144331434814782870120 \)

Local data

This elliptic curve is not semistable. There are 5 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(1\) \(I_{13}\) Non-split multiplicative 1 1 13 13
\(3\) \(1\) \(I_{5}\) Non-split multiplicative 1 1 5 5
\(5\) \(1\) \(I_{3}\) Non-split multiplicative 1 1 3 3
\(7\) \(1\) \(IV^{*}\) Additive 1 2 8 0
\(17\) \(2\) \(III\) Additive 1 2 3 0

Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) .

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.

No Iwasawa invariant data is available for this curve.

Isogenies

This curve has no rational isogenies. Its isogeny class 424830.r consists of this curve only.