Properties

Label 424830.q
Number of curves $2$
Conductor $424830$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("q1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 424830.q

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
424830.q1 424830q2 \([1, 1, 0, -532715873, 4703989857477]\) \(1198345620520313/8268750000\) \(115363492146750728868750000\) \([2]\) \(240648192\) \(3.8344\) \(\Gamma_0(N)\)-optimal*
424830.q2 424830q1 \([1, 1, 0, -12723953, 163316413653]\) \(-16329068153/816480000\) \(-11391320824547729113440000\) \([2]\) \(120324096\) \(3.4879\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 424830.q1.

Rank

sage: E.rank()
 

The elliptic curves in class 424830.q have rank \(0\).

Complex multiplication

The elliptic curves in class 424830.q do not have complex multiplication.

Modular form 424830.2.a.q

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{8} + q^{9} + q^{10} + 2q^{11} - q^{12} - 2q^{13} + q^{15} + q^{16} - q^{18} - 6q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.