Show commands for:
SageMath
sage: E = EllipticCurve("m1")
sage: E.isogeny_class()
Elliptic curves in class 424830.m
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
424830.m1 | 424830m2 | [1, 1, 0, -133158, 3277548] | [2] | 4423680 | |
424830.m2 | 424830m1 | [1, 1, 0, -99838, 12080692] | [2] | 2211840 | \(\Gamma_0(N)\)-optimal* |
Rank
sage: E.rank()
The elliptic curves in class 424830.m have rank \(2\).
Complex multiplication
The elliptic curves in class 424830.m do not have complex multiplication.Modular form 424830.2.a.m
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.