Minimal Weierstrass equation
\(y^2+xy=x^3+x^2-214943033x-1213633745883\)
Mordell-Weil group structure
\(\Z\)
Infinite order Mordell-Weil generator and height
\(P\) | = | \( \left(\frac{283366055941}{2486929}, \frac{149302926112687330}{3921887033}\right) \) |
\(\hat{h}(P)\) | ≈ | $20.231667410721187258075689257$ |
Integral points
None
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 424830 \) | = | \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 17^{2}\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(-651315520085905452839040 \) | = | \(-1 \cdot 2^{7} \cdot 3^{11} \cdot 5 \cdot 7^{7} \cdot 17^{8} \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( -\frac{1338179037945481}{793618560} \) | = | \(-1 \cdot 2^{-7} \cdot 3^{-11} \cdot 5^{-1} \cdot 7^{-1} \cdot 17^{4} \cdot 2521^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(1\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(20.231667410721187258075689257\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(0.019713932609843005529264770521\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 12 \) = \( 1\cdot1\cdot1\cdot2^{2}\cdot3 \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(1\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
Modular form 424830.2.a.ba
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 117621504 | ||
\( \Gamma_0(N) \)-optimal: | yes | ||
Manin constant: | 1 |
Special L-value
\( L'(E,1) \) ≈ \( 4.7861487350365730062518894345806621699 \)
Local data
This elliptic curve is not semistable. There are 5 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(1\) | \(I_{7}\) | Non-split multiplicative | 1 | 1 | 7 | 7 |
\(3\) | \(1\) | \(I_{11}\) | Non-split multiplicative | 1 | 1 | 11 | 11 |
\(5\) | \(1\) | \(I_{1}\) | Non-split multiplicative | 1 | 1 | 1 | 1 |
\(7\) | \(4\) | \(I_1^{*}\) | Additive | -1 | 2 | 7 | 1 |
\(17\) | \(3\) | \(IV^{*}\) | Additive | -1 | 2 | 8 | 0 |
Galois representations
The 2-adic representation attached to this elliptic curve is surjective.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) .
$p$-adic data
$p$-adic regulators
\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.
No Iwasawa invariant data is available for this curve.
Isogenies
This curve has no rational isogenies. Its isogeny class 424830.ba consists of this curve only.