Show commands for:
SageMath
sage: E = EllipticCurve("cs1")
sage: E.isogeny_class()
Elliptic curves in class 416955.cs
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
416955.cs1 | 416955cs2 | [0, -1, 1, -9671310, 218863581893] | [] | 202500000 | \(\Gamma_0(N)\)-optimal* |
416955.cs2 | 416955cs1 | [0, -1, 1, -3227460, -2612452327] | [] | 40500000 | \(\Gamma_0(N)\)-optimal* |
Rank
sage: E.rank()
The elliptic curves in class 416955.cs have rank \(1\).
Complex multiplication
The elliptic curves in class 416955.cs do not have complex multiplication.Modular form 416955.2.a.cs
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.