Show commands for:
SageMath
sage: E = EllipticCurve("bs1")
sage: E.isogeny_class()
Elliptic curves in class 416955.bs
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
416955.bs1 | 416955bs5 | [1, 1, 0, -1100761207, 14056384132276] | [2] | 53084160 | \(\Gamma_0(N)\)-optimal* |
416955.bs2 | 416955bs3 | [1, 1, 0, -68797582, 219609455551] | [2, 2] | 26542080 | \(\Gamma_0(N)\)-optimal* |
416955.bs3 | 416955bs6 | [1, 1, 0, -68456437, 221895604654] | [2] | 53084160 | |
416955.bs4 | 416955bs4 | [1, 1, 0, -9185652, -5654617371] | [2] | 26542080 | |
416955.bs5 | 416955bs2 | [1, 1, 0, -4321177, 3394279024] | [2, 2] | 13271040 | \(\Gamma_0(N)\)-optimal* |
416955.bs6 | 416955bs1 | [1, 1, 0, 12628, 158660211] | [2] | 6635520 | \(\Gamma_0(N)\)-optimal* |
Rank
sage: E.rank()
The elliptic curves in class 416955.bs have rank \(0\).
Complex multiplication
The elliptic curves in class 416955.bs do not have complex multiplication.Modular form 416955.2.a.bs
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 8 & 4 & 8 \\ 2 & 1 & 2 & 4 & 2 & 4 \\ 4 & 2 & 1 & 8 & 4 & 8 \\ 8 & 4 & 8 & 1 & 2 & 4 \\ 4 & 2 & 4 & 2 & 1 & 2 \\ 8 & 4 & 8 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.