Properties

Label 4160b
Number of curves $4$
Conductor $4160$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 4160b have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 4160b do not have complex multiplication.

Modular form 4160.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} - q^{5} - 4 q^{7} + q^{9} + 6 q^{11} - q^{13} - 2 q^{15} - 6 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 4160b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4160.o2 4160b1 \([0, -1, 0, -2081, 37025]\) \(3803721481/26000\) \(6815744000\) \([2]\) \(4608\) \(0.72086\) \(\Gamma_0(N)\)-optimal
4160.o3 4160b2 \([0, -1, 0, -801, 80801]\) \(-217081801/10562500\) \(-2768896000000\) \([2]\) \(9216\) \(1.0674\)  
4160.o1 4160b3 \([0, -1, 0, -13281, -561055]\) \(988345570681/44994560\) \(11795053936640\) \([2]\) \(13824\) \(1.2702\)  
4160.o4 4160b4 \([0, -1, 0, 7199, -2154399]\) \(157376536199/7722894400\) \(-2024510429593600\) \([2]\) \(27648\) \(1.6167\)