Show commands:
SageMath
E = EllipticCurve("p1")
E.isogeny_class()
Elliptic curves in class 4160.p
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
4160.p1 | 4160m1 | \([0, -1, 0, -81, 305]\) | \(3631696/65\) | \(1064960\) | \([2]\) | \(512\) | \(-0.047762\) | \(\Gamma_0(N)\)-optimal |
4160.p2 | 4160m2 | \([0, -1, 0, -1, 801]\) | \(-4/4225\) | \(-276889600\) | \([2]\) | \(1024\) | \(0.29881\) |
Rank
sage: E.rank()
The elliptic curves in class 4160.p have rank \(0\).
Complex multiplication
The elliptic curves in class 4160.p do not have complex multiplication.Modular form 4160.2.a.p
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.