Properties

Label 4160.p
Number of curves $2$
Conductor $4160$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("p1")
 
E.isogeny_class()
 

Elliptic curves in class 4160.p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4160.p1 4160m1 \([0, -1, 0, -81, 305]\) \(3631696/65\) \(1064960\) \([2]\) \(512\) \(-0.047762\) \(\Gamma_0(N)\)-optimal
4160.p2 4160m2 \([0, -1, 0, -1, 801]\) \(-4/4225\) \(-276889600\) \([2]\) \(1024\) \(0.29881\)  

Rank

sage: E.rank()
 

The elliptic curves in class 4160.p have rank \(0\).

Complex multiplication

The elliptic curves in class 4160.p do not have complex multiplication.

Modular form 4160.2.a.p

sage: E.q_eigenform(10)
 
\(q + 2 q^{3} - q^{5} + q^{9} + 2 q^{11} - q^{13} - 2 q^{15} + 2 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.