Show commands for:
SageMath
sage: E = EllipticCurve("u1")
sage: E.isogeny_class()
Elliptic curves in class 41280u
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
41280.bu3 | 41280u1 | [0, -1, 0, -4385, -110175] | [2] | 36864 | \(\Gamma_0(N)\)-optimal |
41280.bu2 | 41280u2 | [0, -1, 0, -5665, -39263] | [2, 2] | 73728 | |
41280.bu4 | 41280u3 | [0, -1, 0, 21855, -330975] | [2] | 147456 | |
41280.bu1 | 41280u4 | [0, -1, 0, -53665, 4770337] | [4] | 147456 |
Rank
sage: E.rank()
The elliptic curves in class 41280u have rank \(1\).
Complex multiplication
The elliptic curves in class 41280u do not have complex multiplication.Modular form 41280.2.a.u
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.