Show commands for:
SageMath
sage: E = EllipticCurve("dk1")
sage: E.isogeny_class()
Elliptic curves in class 41280dk
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
41280.ct3 | 41280dk1 | [0, 1, 0, -4385, 110175] | [2] | 36864 | \(\Gamma_0(N)\)-optimal |
41280.ct2 | 41280dk2 | [0, 1, 0, -5665, 39263] | [2, 2] | 73728 | |
41280.ct4 | 41280dk3 | [0, 1, 0, 21855, 330975] | [4] | 147456 | |
41280.ct1 | 41280dk4 | [0, 1, 0, -53665, -4770337] | [2] | 147456 |
Rank
sage: E.rank()
The elliptic curves in class 41280dk have rank \(0\).
Complex multiplication
The elliptic curves in class 41280dk do not have complex multiplication.Modular form 41280.2.a.dk
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.