Properties

Label 409101y
Number of curves $2$
Conductor $409101$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("409101.y1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 409101y

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
409101.y1 409101y1 [0, -1, 1, -36703, 2719254] [] 829440 \(\Gamma_0(N)\)-optimal
409101.y2 409101y2 [0, -1, 1, 14117, 9419871] [] 2488320  

Rank

sage: E.rank()
 

The elliptic curves in class 409101y have rank \(1\).

Modular form 409101.2.a.y

sage: E.q_eigenform(10)
 
\( q - q^{3} - 2q^{4} + q^{9} + 2q^{12} + 5q^{13} + 4q^{16} - 6q^{17} - q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.