Properties

Label 409101.y2
Conductor $409101$
Discriminant $-3.855\times 10^{16}$
j-invariant \( \frac{3584000000}{444107667} \)
CM no
Rank $1$
Torsion structure trivial

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([0, -1, 1, 14117, 9419871]) # or
 
sage: E = EllipticCurve("409101y2")
 
gp: E = ellinit([0, -1, 1, 14117, 9419871]) \\ or
 
gp: E = ellinit("409101y2")
 
magma: E := EllipticCurve([0, -1, 1, 14117, 9419871]); // or
 
magma: E := EllipticCurve("409101y2");
 

\( y^2 + y = x^{3} - x^{2} + 14117 x + 9419871 \)

Mordell-Weil group structure

\(\Z\)

Infinite order Mordell-Weil generator and height

sage: E.gens()
 
magma: Generators(E);
 

\(P\) =  \( \left(-117, -2481\right) \)
\(\hat{h}(P)\) ≈  $3.4270193489780367$

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(-117, 2480\right) \), \( \left(-117, -2481\right) \)

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 409101 \)  =  \(3 \cdot 7^{2} \cdot 11^{2} \cdot 23\)
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: \(-38551427310251163 \)  =  \(-1 \cdot 3 \cdot 7^{2} \cdot 11^{6} \cdot 23^{6} \)
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{3584000000}{444107667} \)  =  \(2^{15} \cdot 3^{-1} \cdot 5^{6} \cdot 7 \cdot 23^{-6}\)
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Rank: \(1\)
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: \(3.42701934897804\)
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: \(0.27996057557089\)
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: \( 4 \)  = \( 1\cdot1\cdot2\cdot2 \)
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: \(1\)
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form 409101.2.a.y

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - q^{3} - 2q^{4} + q^{9} + 2q^{12} + 5q^{13} + 4q^{16} - 6q^{17} - q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 2488320
\( \Gamma_0(N) \)-optimal: no
Manin constant: 1

Special L-value

sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

\( L'(E,1) \) ≈ \( 3.837721237729873 \)

Local data

This elliptic curve is not semistable.

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(3\) \(1\) \( I_{1} \) Non-split multiplicative 1 1 1 1
\(7\) \(1\) \( II \) Additive -1 2 2 0
\(11\) \(2\) \( I_0^{*} \) Additive -1 2 6 0
\(23\) \(2\) \( I_{6} \) Non-split multiplicative 1 1 6 6

Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(3\) B

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]
 

\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.

No Iwasawa invariant data is available for this curve.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 409101.y consists of 2 curves linked by isogenies of degree 3.