Properties

Label 4080.x
Number of curves $4$
Conductor $4080$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("x1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 4080.x have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 4080.x do not have complex multiplication.

Modular form 4080.2.a.x

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{5} + 4 q^{7} + q^{9} + 4 q^{11} - 2 q^{13} - q^{15} + q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 4080.x

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4080.x1 4080bb3 \([0, 1, 0, -104656, 12996500]\) \(30949975477232209/478125000\) \(1958400000000\) \([2]\) \(18432\) \(1.4937\)  
4080.x2 4080bb2 \([0, 1, 0, -6736, 188564]\) \(8253429989329/936360000\) \(3835330560000\) \([2, 2]\) \(9216\) \(1.1471\)  
4080.x3 4080bb1 \([0, 1, 0, -1616, -22380]\) \(114013572049/15667200\) \(64172851200\) \([2]\) \(4608\) \(0.80053\) \(\Gamma_0(N)\)-optimal
4080.x4 4080bb4 \([0, 1, 0, 9264, 962964]\) \(21464092074671/109596256200\) \(-448906265395200\) \([4]\) \(18432\) \(1.4937\)