Properties

Label 4080.s
Number of curves $2$
Conductor $4080$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("s1")
 
E.isogeny_class()
 

Elliptic curves in class 4080.s

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4080.s1 4080ba2 \([0, 1, 0, -739096, -244794220]\) \(10901014250685308569/1040774054400\) \(4263010526822400\) \([2]\) \(48384\) \(2.0357\)  
4080.s2 4080ba1 \([0, 1, 0, -42776, -4424556]\) \(-2113364608155289/828431400960\) \(-3393255018332160\) \([2]\) \(24192\) \(1.6892\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 4080.s have rank \(0\).

Complex multiplication

The elliptic curves in class 4080.s do not have complex multiplication.

Modular form 4080.2.a.s

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{5} - 2 q^{7} + q^{9} + 4 q^{11} + 4 q^{13} - q^{15} + q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.