Properties

Label 4080.n
Number of curves $2$
Conductor $4080$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("n1")
 
E.isogeny_class()
 

Elliptic curves in class 4080.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4080.n1 4080w2 \([0, -1, 0, -185640, 30848112]\) \(172735174415217961/39657600\) \(162437529600\) \([2]\) \(16128\) \(1.5318\)  
4080.n2 4080w1 \([0, -1, 0, -11560, 488560]\) \(-41713327443241/639221760\) \(-2618252328960\) \([2]\) \(8064\) \(1.1853\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 4080.n have rank \(0\).

Complex multiplication

The elliptic curves in class 4080.n do not have complex multiplication.

Modular form 4080.2.a.n

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + 2 q^{7} + q^{9} - 4 q^{11} - q^{15} + q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.