Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 4080.c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
4080.c1 | 4080t4 | \([0, -1, 0, -2976, 63360]\) | \(711882749089/1721250\) | \(7050240000\) | \([2]\) | \(3072\) | \(0.76852\) | |
4080.c2 | 4080t3 | \([0, -1, 0, -2656, -51584]\) | \(506071034209/2505630\) | \(10263060480\) | \([2]\) | \(3072\) | \(0.76852\) | |
4080.c3 | 4080t2 | \([0, -1, 0, -256, 256]\) | \(454756609/260100\) | \(1065369600\) | \([2, 2]\) | \(1536\) | \(0.42195\) | |
4080.c4 | 4080t1 | \([0, -1, 0, 64, 0]\) | \(6967871/4080\) | \(-16711680\) | \([2]\) | \(768\) | \(0.075374\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 4080.c have rank \(1\).
Complex multiplication
The elliptic curves in class 4080.c do not have complex multiplication.Modular form 4080.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.