Properties

Label 4080.c
Number of curves $4$
Conductor $4080$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 4080.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4080.c1 4080t4 \([0, -1, 0, -2976, 63360]\) \(711882749089/1721250\) \(7050240000\) \([2]\) \(3072\) \(0.76852\)  
4080.c2 4080t3 \([0, -1, 0, -2656, -51584]\) \(506071034209/2505630\) \(10263060480\) \([2]\) \(3072\) \(0.76852\)  
4080.c3 4080t2 \([0, -1, 0, -256, 256]\) \(454756609/260100\) \(1065369600\) \([2, 2]\) \(1536\) \(0.42195\)  
4080.c4 4080t1 \([0, -1, 0, 64, 0]\) \(6967871/4080\) \(-16711680\) \([2]\) \(768\) \(0.075374\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 4080.c have rank \(1\).

Complex multiplication

The elliptic curves in class 4080.c do not have complex multiplication.

Modular form 4080.2.a.c

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{9} - 4 q^{11} + 2 q^{13} + q^{15} + q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.