Properties

Label 4080.bd
Number of curves $1$
Conductor $4080$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bd1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 4080.bd1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 4080.bd do not have complex multiplication.

Modular form 4080.2.a.bd

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + 3 q^{7} + q^{9} - 3 q^{11} - 4 q^{13} + q^{15} - q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 4080.bd

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4080.bd1 4080bd1 \([0, 1, 0, -1230, -17025]\) \(-12872772702976/3984375\) \(-63750000\) \([]\) \(2016\) \(0.47400\) \(\Gamma_0(N)\)-optimal