Show commands for:
SageMath
sage: E = EllipticCurve("ba1")
sage: E.isogeny_class()
Elliptic curves in class 4080.ba
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
4080.ba1 | 4080be7 | [0, 1, 0, -1815520, 940954100] | [8] | 49152 | |
4080.ba2 | 4080be3 | [0, 1, 0, -348160, -79187020] | [2] | 12288 | |
4080.ba3 | 4080be5 | [0, 1, 0, -115520, 14114100] | [2, 4] | 24576 | |
4080.ba4 | 4080be4 | [0, 1, 0, -23040, -1089612] | [2, 4] | 12288 | |
4080.ba5 | 4080be2 | [0, 1, 0, -21760, -1242700] | [2, 2] | 6144 | |
4080.ba6 | 4080be1 | [0, 1, 0, -1280, -22092] | [2] | 3072 | \(\Gamma_0(N)\)-optimal |
4080.ba7 | 4080be6 | [0, 1, 0, 48960, -6475212] | [4] | 24576 | |
4080.ba8 | 4080be8 | [0, 1, 0, 104800, 61791348] | [4] | 49152 |
Rank
sage: E.rank()
The elliptic curves in class 4080.ba have rank \(1\).
Complex multiplication
The elliptic curves in class 4080.ba do not have complex multiplication.Modular form 4080.2.a.ba
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 16 & 2 & 4 & 8 & 16 & 8 & 4 \\ 16 & 1 & 8 & 4 & 2 & 4 & 8 & 16 \\ 2 & 8 & 1 & 2 & 4 & 8 & 4 & 2 \\ 4 & 4 & 2 & 1 & 2 & 4 & 2 & 4 \\ 8 & 2 & 4 & 2 & 1 & 2 & 4 & 8 \\ 16 & 4 & 8 & 4 & 2 & 1 & 8 & 16 \\ 8 & 8 & 4 & 2 & 4 & 8 & 1 & 8 \\ 4 & 16 & 2 & 4 & 8 & 16 & 8 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.