Show commands: SageMath
Rank
The elliptic curves in class 406560bs have rank \(1\).
Complex multiplication
The elliptic curves in class 406560bs do not have complex multiplication.Modular form 406560.2.a.bs
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 406560bs
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 406560.bs3 | 406560bs1 | \([0, -1, 0, -8510, 300192]\) | \(601211584/11025\) | \(1250013441600\) | \([2, 2]\) | \(983040\) | \(1.1160\) | \(\Gamma_0(N)\)-optimal* |
| 406560.bs1 | 406560bs2 | \([0, -1, 0, -135560, 19256052]\) | \(303735479048/105\) | \(95239119360\) | \([2]\) | \(1966080\) | \(1.4625\) | \(\Gamma_0(N)\)-optimal* |
| 406560.bs4 | 406560bs3 | \([0, -1, 0, -40, 862600]\) | \(-8/354375\) | \(-321432027840000\) | \([2]\) | \(1966080\) | \(1.4625\) | |
| 406560.bs2 | 406560bs4 | \([0, -1, 0, -17585, -442143]\) | \(82881856/36015\) | \(261336143523840\) | \([2]\) | \(1966080\) | \(1.4625\) |