Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-1212800x+511751748\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-1212800xz^2+511751748z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-98236827x+373361734746\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{4}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(511, 5070)$ | $1.1488162653747856611912969561$ | $\infty$ |
| $(1018, 18252)$ | $0$ | $4$ |
Integral points
\((-854,\pm 30420)\), \((511,\pm 5070)\), \((586,\pm 1620)\), \( \left(667, 0\right) \), \((1018,\pm 18252)\), \((1963,\pm 75492)\)
Invariants
| Conductor: | $N$ | = | \( 40560 \) | = | $2^{4} \cdot 3 \cdot 5 \cdot 13^{2}$ |
|
| Discriminant: | $\Delta$ | = | $853686646348723200$ | = | $2^{10} \cdot 3^{12} \cdot 5^{2} \cdot 13^{7} $ |
|
| j-invariant: | $j$ | = | \( \frac{39914580075556}{172718325} \) | = | $2^{2} \cdot 3^{-12} \cdot 5^{-2} \cdot 13^{-1} \cdot 21529^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.2939908052364123066997252101$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.43389347603902284749195472143$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9684903102916578$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.055250974788784$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.1488162653747856611912969561$ |
|
| Real period: | $\Omega$ | ≈ | $0.28278710390924681627369053135$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 384 $ = $ 2^{2}\cdot( 2^{2} \cdot 3 )\cdot2\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $7.7968901906201370755923545181 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.796890191 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.282787 \cdot 1.148816 \cdot 384}{4^2} \\ & \approx 7.796890191\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 516096 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{2}^{*}$ | additive | 1 | 4 | 10 | 0 |
| $3$ | $12$ | $I_{12}$ | split multiplicative | -1 | 1 | 12 | 12 |
| $5$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $13$ | $4$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.12.0.7 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 312 = 2^{3} \cdot 3 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 44 & 311 \\ 97 & 306 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 306 & 307 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 43 & 42 \\ 130 & 283 \end{array}\right),\left(\begin{array}{rr} 305 & 8 \\ 304 & 9 \end{array}\right),\left(\begin{array}{rr} 109 & 116 \\ 70 & 267 \end{array}\right),\left(\begin{array}{rr} 209 & 8 \\ 212 & 33 \end{array}\right)$.
The torsion field $K:=\Q(E[312])$ is a degree-$40255488$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/312\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 169 = 13^{2} \) |
| $3$ | split multiplicative | $4$ | \( 13520 = 2^{4} \cdot 5 \cdot 13^{2} \) |
| $5$ | split multiplicative | $6$ | \( 8112 = 2^{4} \cdot 3 \cdot 13^{2} \) |
| $13$ | additive | $98$ | \( 240 = 2^{4} \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 40560y
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 1560i3, its twist by $-52$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{13}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | 4.4.1265472.1 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.197706096640000.50 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.5922408960000.122 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.8.1601419382784.3 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | split | split | ss | ss | add | ord | ord | ss | ord | ss | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 2 | 2 | 1,1 | 1,1 | - | 1 | 1 | 1,1 | 1 | 1,1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 0 | 0 | 0,0 | 0,0 | - | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.